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Abstract: Systems coordinating distributed collaborative work must manage user data 
distributed over a network. The strong consistency algorithms which designers have 
typically borrowed from the distributed systems community are often unsuited to the 
particular needs of CSCW. Here, I outline an alternative approach based on divergence 
and synchronisation between parallel streams of activity. From a CSCW perspective, this 
strategy offers three primary advantages. First, it is scalable, allowing smooth transitions 
from highly interactive collaboration to-more extended, "asynchronous" styles of work. 
Second, it supports "multi-synchronous" work, in which parties work independently in 
parallel. Third, it directly supports observed patterns of opportunistic activities in 
collaborative working. 

Introduction: Distributed Data Management 

Collaborative applications coordinate activities which may be distributed in time 
and/or space. Distributed in time, activities may take place at different times but 
are coordinated to achieve a unified effect (such as the production of a document). 
Distributed in space, activities may take place on different computers perhaps 
linked by a data network. So, collaborative applications, are heir to a set of design 
problems which have arisen in the development of distributed computing systems 
(or just "distributed systems"), concerning distributed data management.. 

This paper considers strategies to meet the conflicting demands placed on 
collaborative applications, in presenting users with a single, uniform data "space". 
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Managing Divergence 
• • " " • ' i : , 

The variety of data management strategies is testament to the fact that no single 
approach is applicable in all cases. In part, this is simply due to the considerable 
variation in the needs of CSCW systems. In addition, it is because the choice of 
management strategies has strong implications for the interface and for the nature 
of collaborative'interaction in'a CSCW system (e.g. Greenberg and Marwood 
(1994)). Collaborative systems, differ crucially from other distributed systems in 
that not only the application, but also the interface, is distributed. The trade-offs 
between availability, transparency, consistency and responsiveness must be made 
with this in mind, and so design1 must be constantly mindful of the way m which 
application distribution and interface distribution are mutually influential. 

These issues are particularly important when building a CSCW toolkit, which 
will be used to create a wide range of applications. The toolkit designer is even 
more distant from end-users than is the developer of individual applications; and 
so it becomes critical to understand the implications of distributed data strategies 
for particular usage situations'. Here; we need to find a general characterisation of 
distributed data management m CSCW. 

' • ( , , • • , , ] . i i ; 
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Inconsistency Avoidance'and Streams of Activity 
We begin with a simple but crucial observation; that most approaches to data 
management in CSCW deal with; inconsistency avoidance rather than consistency 
management. Rather than working to achieve data consistency, they erect barriers 
to prevent inconsistency arising.in ,the first place. This is a distributed systems 
approach; the system manages] the,action of the separate components to avoid 
inconsistency. Applying this, strategy to collaborative work is problematic. Our 
distributed entities are users, not programs; and they're less prepared to accept the 
imposition of global mechanisms;to constrain their activity! 

Since inconsistency arises through the simultaneous execution of conflicting 
operations, the simplest approach to avoiding inconsistency is to avoid 
simultaneous action over individual data items. This approach attempts to define 
single, global stream of activity oyer the data space. Asynchronous access 
achieves this, by sharing one stream, between multiple participants, one at a time. 
Floor control policies and lockingjmechanisms do likewise, at a finer granularity. 

The alternative,approachjexplored here abandons this attempt to construct a 
single stream of activity out of multi7user activity. Instead, it begins with a picture 
of multiple, simultaneous streams of activity, and then looks to manage 
divergence between these streams. Divergence occurs when two streams have 
different views of the data state. This could arise through simultaneous execution 
of conflicting operations; or through a lag in propagating compatible operations. 

Since this general view does not imply any particular number of parallel 
streams of activity, it encompasses the traditional views outlined earlier; they 
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correspond to the special case of just one stream. Divergence between multiple 
streams of activity is the more general case; it subsumes attempts to maintain a 
single thread of control. This generality is critical to the design of a toolkit. 

This paper explores divergence in pursuit of a generic, specialisable model of 
distributed data management. By generic, I mean that this model describes, in 
general terms, a range of distribution strategies which can be used in CSCW 
systems. By specialisable, I mean that any particular example can be 
operationally described as a refinement of the general model. The model is not 
simply a tool for the analytic description of CSCW architectures and 
implementations; it can also be used to generate and implement new ones. It has 
been developed as part of Prospero, a toolkit for CSCW application design using 
explicit specialisable models as a basis for highly flexible, open-ended design 
(Dourish, 1995a); and its framework is the basis for creating data management 
strategies in CSCW applications. 

Divergence 

So, first, we regard collaborative activity as the progress of multiple, simultaneous 
streams of activity. Second, we view inconsistency as divergence between these 
streams' views of data. Hence, we see distributed data management in terms of 
the re-synchronisation of divergent streams of activity. As collaboration 
progresses, the streams continually split and merge, diverge and synchronise. At 
synchronisation, they re-establish a common view of the data; further activity will 
cause them to diverge again, necessitating further synchronisation later. 

Divergence and Versioning 

This view of continual divergence and synchronisation is similar to that of 
versioning systems, which maintain a historical record of the versions of some 
object which have existed over time. They typically allow multiple versions of an 
object to exist at once, and in some, multiple versions can be simultaneously 
active. GMD's CoVer (Haake and Haake, 1993) uses a version system to manage 
the cooperative work. ; however, it emphasises the creation and management of 
parallel versions rather than the subsequent integration of different versions 
(divergent streams). Munson and Dewan (1994) provide a framework organised 
around version merging, but, again, they primarily emphasise versioning and 
merging within a context of "asynchronous" work, rather than as a more general 
approach to distributed data management. I want to consider the wider use of 
divergence as a general strategy (discussed in more detail below). 

Divergence and Operational Transformation 

An alternative technique which has been employed effectively in a number of 
collaborative systems is operational transformation (Ellis and Gibbs, 1989; 
Beaudoiun-Lafon and Karsenty, 1992). Operational transformation employs a 
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model of multiple streams, and uses a transformation matrix to transform records 
of remote operations before applying them locally, using information about the 
different contexts in which the operations arose. Clearly, this approach is much 
closer to the divergence model advocated here, but there are two principal 
differences. First, just as versioning approaches have typically emphasised 
asynchronous activity, operational transformation has typically emphasised 
synchronous; as will be discussed, Prospero's model attempts to be more general. 
Second, operational transformation relies upon the transformation matrix to 
resolve conflicts (easier in the tightly-coupled, synchronous domain); whereas 
Prospero employs a more general notion of synchronisation which potentially 
offers a much wider scale of applicability. 

Much of what's critical about the divergence view is what it doesn't say, 
because those areas of openness are the keys to the speciahsable nature of the 
model. So far, nothing has been said about the defined units of activity, or what 
constitutes a "stream"; nothing has been said about the granularity of 
"divergence" per se and how it is recognised; and nothing has been said about the 
timescale on which divergence and resynchronisation takes place. In fact, this 
openness is critical to the particular advantages of divergence for CSCW. 

Divergence and Replicated Databases 

Replicated database research has also addressed questions of divergence. In a 
replicated database, multiple copies of all or part of the database are maintained in 
parallel, to increase availability. This is discussed in detail elsewhere (Dourish, 
1995b), but an outline is appropriate here. 

In database work, consistency is normally maintained by supporting the 
transaction model, which decomposes database activity into a sequence of 
transactions. Transactions group related operations for atomic execution; since 
transactions execution is all-or-nothing, consistency can be maintained. In 
replicated databases, research focuses on the detection of transaction conflicts and 
on finding an execution order which avoids potential conflicts. Various 
approaches can be used to sustain the transaction model under replication. For 
instance, distributed conflict detection can be used to generate the consistent 
serialisation globally, rather than individually at each replication point; or 
rollback techniques can be used as an optimistic concurrency model, so that 
conflicting transactions can be undone and reexecuted later. 

These techniques place the detection, avoidance and management of conflicts 
within the database itself; unlike this proposal, the application is typically not 
involved in the conflict management process. This is generally true when 
collaborative applications are based on database technology. However, there are 
times when this model must break down. In Lotus Notes, for example, users 
interact directly with document databases replicated amongst different sites but 
largely disconnected from each other, and so conflicts can occur dunng periods of 
simultaneous work (as here). However, in these cases, Notes merely flags the 
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conflict and carries on, rather than providing any means for conflict resolution. 
Replicated databases deal with some problems which divergence raises; however, 
they generally do not directly exploit divergence to support multi-user activity. 

Capitalising on Divergence 

Divergence-based data management in CSCW offers three particular advantages 
over other techniques. First, it is highly scalable, supporting inter-application 
communication from periods of milliseconds to periods of weeks or more. 
Second, it opens up direct CSCW support for an area of application use—one I 
term multi-synchronous—which are supported poorly or not-at-all by existing 
approaches. Third, it directly supports common patterns of working activity based 
on observational studies which are at odds with the models embodied in most 
systems today. 

Scalability 

Scalability refers to graceful operation across some dimension of system design. 
In particular, the scalable dimension here is the pace of interaction (Dix, 1992); 
or, more technically, its relationship to the period of synchronisation. 

The period of synchronisation is the regularity with which two streams are 
synchronised, and hence the length of time that two streams will remain 
divergent. When the period is very small, then synchronisation happens 
frequently, and therefore the degree of divergence is typically very small before 
the streams are synchronised and achieve a consistent view of the data store. 
When individuals use a collaborative system with a very small period of 
synchronisation, their view of the shared workspace is highly consistent, since 
synchronisation takes place often relative to their actions. This essentially 
characterises "real-time" or synchronous groupware, in which users work 
"simultaneously" in some shared space which communicates the effects of each 
user's actions to all participants "as they happen". The synchronous element 
arises from precisely the way in which the delay between divergence(an action 
taking place) and synchronisation (the action being propagated to other 
participants) is small. This is one end of the "pace of interaction" dimension. 

At the other end, synchronisation takes place much less frequently in 
comparison to the actions of the users. There is considerably more divergence, 
arising from different sorts of activities which take place between synchronisation 
points. When the period of synchronisation is measured in hours, days or weeks, 
we approach what is traditionally thought of as "asynchronous" interaction. A 
(well-worn) example might be the collaborative authoring of an academic paper, 
in which authors take turns revising drafts of individual sections or of the entire 
paper over a long period, passing the emerging document between them. 

Within the CSCW community, these sorts of asynchronous interactions have 
generally been seen and presented as being quite different from real-time or 
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synchronous interactions; "synchronous or asynchronous" has been a distinction 
made in both design and analysis. However, by looking at them in terms of 
synchronisation rather than synchrony, we can see them as two aspects of the 
same form of activity, with different periods of synchronisation. Being highly 
scalable across this dimension, the divergence approach provides the basis of a 
toolkit which generalises across this distinction. 

Multi-Synchronous Applications 

We can exploit a divergence-based view of distributed data management to go 
further than standard "synchronous" and "asynchronous" views of collaboration. 

Standard techniques attempt to maintain the illusion of a- single stream of 
activity within the collaborative workspace. We know, however, that groups don't 
work that way; it's much more common to have a whole range of simultaneous 
activities, possibly on different levels. Consider the collaboratively-authored 
paper again. In the absence of restrictions introduced by particular technologies or 
applications, individuals do not rigorously partition their activity in time, with all 
activity concentrated in one place at a time; that is, they do not work in the 
strongly asynchronous style, one at a time, that many collaborative systems 
embody. A more familiar scenario would see the authors each take a copy of the 
current draft and work on them in parallel—at home, in the office, on the plane or 
wherever. Here we have simultaneous work by a number of individuals and 
subsequent integration of those separate activities; not synchronous, or 
asynchronous, but multi-synchronous work. 

Multiple, parallel streams of activity is a natural way to support this familiar 
pattern of collaborative work. Working activities proceed in parallel (multiple 
streams of activity), during which time the participants are "disconnected" 
(divergence occurs); and periodically their individual efforts will be integrated 
(synchronisation) to achieve a consistent state and progress group activity. 

Here, we're concerned with the nature of synchronisation, discussed in more 
detail subsequently. At this stage, the details of synchronisation in a variety of 
cases are not of prime importance; examples will be considered in more depth 
later on. For the moment, however, what's important is to recognise the support 
for multi-synchronous working within this model of distributed data management. 

Supporting Opportunistic Work 

Divergence does not simply support a different working style; it's also a means 
to more naturally support the other styles to which CSCW has traditionally 
addressed itself. In studies of collaborative authoring, Beck and Bellotti (1993) 
highlighted the opportunistic way in which much activity was performed. In 
particular, they pointed to the ways in which opportunistic action on the parts of 
individual collaborators often went against pre-defined roles, responsibilities or 
plans. Individuals acted in response to specific circumstances; while the plans and 
strategies formed one guide to their actions, they were by no means the only 
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factors at work, and in each of their case studies, they observed occasions on 
which agreements about who would do what and when were broken. Critically, 
these broken agreements are neither unusual nor problematic; this opportunistic 
activity is part of the natural process of collaboration. (Suchman (1987) has, of 
course, made similar telling observations about the status of plans as resources for 
action rather than as rigorous constraints upon it.) 

So, we must be wary of introducing technology which inappropriately reifies 
plans and use pre-formed strategies to organise collaborative activity since 
observational studies show that they are opportunistically broken in the course of 
an activity. Turn-taking floor control policies, or partitioning a workspace into 
separate regions accessible to different individuals, are examples of technological 
approaches which structure user interaction around plans of this sort. Once again, 
this contrasts the particular needs of CSCW systems with traditional distributed 
systems, and shows that a distributed interface is an important consideration. To 
support the sort of opportunistic working described by Beck and Bellotti, then, 
our technology must relax rules about exclusion and partitioning; exactly the rules 
which have been employed to maintain the fiction of the single stream of activity. 

So the same sorts of mechanisms which were described earlier as supporting 
multi-synchronous collaboration have, in fact, a wider range of applicability; they 
support a more naturalistic means of making asynchronous collaboration work. 
Divergence is a direct consequence of these ways of working; and so a model of 
distributed data management based on a pattern of repeated divergence and 
synchronisation fits well with support for a wide range of working styles. 

Constraining Divergence: Consistency Guarantees 

There is still a problem which must be addressed if we hope to use divergence 
as a strategy for building CSCW systems rather than simply talking about them. 
At any given point, how can we maintain reasonable expectation that 
synchronisation will be possible? If two streams diverge arbitrarily, how can we 
be sure that a consistent view can be constructed later? 

Syntactic and Semantic Consistency 

The answer has two components. The first lies in the very general nature of 
"synchronisation". The notion of synchronisation is in not meant to imply that 
consistency can be achieved automatically. Certainly, it may be possible in many 
cases—particularly where divergence is slight, or activity over the data is highly 
structured—to resolve divergence by automatic mechanisms; but this automation 
is not central to the model. In other cases, conflict resolution may require human 
intervention. However, we can make a distinction between semantic and syntactic 
consistency. By "semantic" consistency, I mean that the data is internally 
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"consistent" and "appropriate for its intended use". By "syntactic" consistency, I 
mean merely that two streams see the same view of the data, even if that view 
doesn't necessarily make sense in context. 

Consider collaborative writing again. Simple changes in formatting, text 
insertion, and so forth can be automatically integrated and so synchronisation is 
largely automatic. Others, however, require human intervention. For instance, if 
two authors have completely changed the same paragraph, then clearly the 
authors should be responsible for deciding which paragraph text should be used, 
and how the conflict can be resolved. So human intervention is required to 
achieve semantic consistency; but a different form of consistency—syntactic— 
can be achieved without human intervention. The system can apply the same 
approach which collaborative authors might well employ when out-of-touch with 
each other; preserving both texts, along with some marker that "this choice 
remains to be resolved". This approach is aggregation—the combination of 
unresolvable data elements to form a single larger unit. Aggregation achieves 
syntactic consistency, which retains the property we require at the system level— 
that the two streams share a view of the user data. It allows the two individuals 
involved to be able to continue working for the moment, although they will have 
to come back and sort out the problem later, together. 

So, by maintaining semantic consistency when possible, resorting to syntactic 
consistency when necessary, and potentially using weak techniques such as 
aggregation, we can achieve a working level of consistency under a variety of 
circumstances. However, we can do more to help ensure that this works smoothly. 

Consistency Guarantees 

The second aspect of our solution is technological. 
Clearly, we can be more confident about achieving consistency if we have 

some idea of what type of divergence is likely to occur. The longer the periods of 
divergence, the less sure we can be about this, and hence about achieving 
consistency. If we knew in advance what sort of actions were likely to occur on a 
stream before the next point of synchronisation, we could make some kind of 
guarantee of the degree of consistency which can be achieved. 

In Prospero, consistency guarantees explicitly represent these interactions. 
Before divergence, one stream can "describe" the likely actions which will occur 
during the period of divergence. For instance, if a user has opened a document for 
reading only, then it's likely that no changes will be made. Alternatively, it may 
be possible to say that the expected changes are all structural, rather than affecting 
the content, or that the user will only add information but not delete any. In 
exchange for this, the client can receive a statement of the level of 
synchronisation which can likely be achieved at the next synchronisation point—a 
consistency guarantee. Again, these are explicit computational artefacts in 
Prospero. Essentially, the guarantee says, "if only actions of those sorts occur, 
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given other declarations of expected activities in other streams, this level of 
consistency should be achievable when synchronisation occurs." 

Consistency guarantees are a more general mechanism than traditional locks, 
although they share certain properties. Consistency guarantees are used to manage 
simultaneous action (rather than to avoid it, like locks); and as a result, they 
embody more limited guarantees of later consistency (while locks guarantee 
absolute consistency). However, they share the principle of providing information 
about activities in advance, in exchange for guarantees of later consistency. We 
wish to avoid the problems of locking described above, such as poor support for 
opportunistic working. So in Prospero, the client can break its "promise" about 
expected behaviour, in which case the system will no longer be held to its 
guarantee. If the client, or the user, performs actions which were not part of its 
declaration, then perhaps only some weaker form of consistency can be achieved. 

Consistency guarantees are a way to manage expectations, but not to enforce 
activity. Space is too limited here to go into the full details of this approach and 
the way in which it is embodied in Prospero; and in later sections, I will pass over 
the relationship between divergence, synchronisation and consistency guarantees. 
A fuller discussion is presented elsewhere (Dourish, 1995b). 

Divergence in Prospero 

We can now look at how divergence work in practice. Prospero is a CSCW 
toolkit written in Common Lisp which has been designed to provide application 
developers with a great deal of flexibility in tailoring the toolkit's components 
and strategies to the needs of specific applications or usage situations. It employs 
computational reflection (Smith, 1984) and open implementation (Kiczales, 1992) 
to open up the implementation and allow application developers—the toolkit's 
users—principled access to internal aspects of the toolkit. This approach exploits 
specialisable generic models of the sort outlined here. In Prospero, the 
divergence/synchronisation patterns form a framework within which particular 
distribution mechanisms are implemented. This is encoded in an object-oriented 
class hierarchy; new strategies are developed by specialisation. 

Here, I will present examples to illustrate the use of the divergence mechanism 
in Prospero and show how divergence supports a wide range of application 
strategies. The examples take the form of code fragments2 illustrating the 
framework's specialisation to the needs of particular applications. After presenting 
these examples, I'll step back to consider the structure of the framework itself. 
Some points should be noted. First, the examples have been considerably 
simplified to illustrate the main points in the space available. In particular, the 
interaction between divergence management and consistency guarantees has been 

2 At this point, and as promised, I beg the indulgence of non- technical readers However, the structure of the 
code fragments is more important than their detail 
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omitted. Second, these examples operate on three levels at once, and it's critical 
to a conceptual understanding that these are kept separate. The first is that of the 
example applications used to illustrate the ideas; the second is the use of 
programming structures to realise these applications, and the third (most 
important) level is the use of divergence to provide a programming framework. 
Since the examples have been structured to highlight this third level, liberties 
have been taken with application requirements and efficient programming. 

Example: Shdr 

Shdr is a simple replicated shared whiteboard application, designed outside the 
divergence framework. Actions are performed on the user's own copy of the data, 
and are recorded in a buffer of activity records. Periodically, buffers are sent to 
other participants using a simple high-level protocol. The update frequency 
varies, but generally the history is be transmitted multiple times per second. 

(defmethod perform-local-action :after ((action <edit-action>)) 
(add-action-to-stream action *my-stream*)) 

(defmethod add-action-to-stream ((action <edit-action>) (stream <stream>)) 
(push action (stream-actions stream))) 

(defmethod add-action-to-stream after (action (stream <bounded-stream>)) 
(if (full-p stream) 

(synchronise stream (stream-remote stream)))) 

(defmethod synchronise ((stream <bounded-stream>) (remote <remote-stream>)) 
(dohst (action (reverse (stream-actions stream))) 

(propagate-action-to-stream action remote)) 
(stream-reset stream)) 

(defmethod propagate-action-to-stream (action (stream <remote-stream>)) 
(remote-call (stream-host stream) incorporate-action action)) 

Figure 1. Mapping shdr's strategy into the Prospero framework. 

We can reconstruct shdr's approach in the divergence framework (figure 1). 
Local actions create divergence from a shared view of the whiteboard until 
synchronisation, when history records are exchanged. Each user's actions are 
associated with a particular stream, where they are recorded until synchronisation. 

User actions are explicitly represented within a class hierarchy rooted in the 
abstract class <action>. Different actions are instances of its subclasses. Here, 
we use the subclass <edit-action> for actions which have an effect on the data 
store (such as making or erasing a mark, but not cursor movement). 

Activity streams are also explicitly represented, under the abstract class 
<stream>. Two subclasses of <stream> are used here. The first, <remote-
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stream>, represents the streams of other users; the second, <bounded-stream>, 
is a particular kind of local stream with specialised behaviours, particular to the 
way that shdr manages user data. A <bounded-stream> accumulates local actions 
and periodically flushes them to other participants. 

We define shdr's strategy in Prospero by writing specific methods on a generic 
function framework3 which in turn describes the general model that Prospero 
embodies. These are the hooks onto which specialised behaviour can be hung. For 
instance, the generic function perform-iocai-act ion, which Prospero uses to 
operate on the local copy of user data, is a place to "attach" the association of user 
actions with a specific stream. This is defined for <edit-act ion> operations, 
rather than all <action> operations, since only the actions which cause a change 
in the data store contribute to divergence. Next, the test for whether a bounded 
stream is "full" and needs to be synchronised is made after any new action record 
is stored there, and so the after-method we define for add-ac t ion- to - s t ream 
specialises on <bounded-stream> rather than <stream>, so it applies only to 
bounded streams. 

(defmethod add-action-to-stream ((action <edit-action>) stream) 
(push action (stream-actions stream))) 

(defmethod add-action-to-stream ((action <synchronise-action>) stream) 
(synchronise stream (stream-remote stream))) 

(defmethod synchronise (stream (remote <remote-stream>)) 
,, as Figure 1 ... 
.-) 

(defmethod propogate-action-to-stream (action (stream 
<remote-stream>)) 

,; as figure 1... 
....) 

Figure 2- Check-in/check-out strategy. 

Example: Source Code Control 

The second example is a traditional source code control system in a 
collaborative programming environment., using a check-in/check-out model for 
software components or modules, and a dependency mechanism which records 
relationships between them. 

After the first example, most of the structure for this is already provided. We 
already have a means to accumulate and distribute sets of changes which arise in 

I use CLOS terminology here for object-oriented concepts. In Smalltalk, the closest relative of a "generic 
function" is a "message", in C++, a "virtual function". 
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one place or another, which can be reused here. The most important change, as 
illustrated in figure 2, concerns user-initiated synchronisation. This code uses a 
new action class, <synchronise-action>, for operations which explicitly force 
synchronisation. In normal editing, the system accumulates the action records, as 
before; but for synchronisation actions, the synchronisation function is invoked. 

Example: Multi-synchronous Editing 

As a final example, let's consider the implications of multi-synchronous working. 

(demethod synchronise (stream (remote <remote-stream>)) 
(dohst (action (reverse (stream-actions stream)) 

(integrate (propagate-action-to-stream action remote))) 
(stream-reset stream)) 

(defmethod propagate-action-to-stream (action (stream 
<remote-stream>)) 

(remote-call (stream-host stream) incorporate-action action)) 

(defmethod incorporate-action (action <edit-action>) 
(if (compatible-p action) (locally-perform action) 

(aggregate action))) 

Figure 3 Supporting multi-synchronous activity. 

With the exception of the possible use of consistency guarantees, omitted here 
due to space considerations, multi-synchronous activity is no different at the point 
of divergence Once again, we can accumulate actions until some synchronisation 
action occurs, either automatically or by user request. This, however, is the point 
at which a more complex strategy is required. In the first example, we could 
simply ignore data consistency problems, and in the second, asynchronous access 
ensured that such problems didn't arise. In this example, we have to be aware of 
the possibility of mutually inconsistent changes and act accordingly. So the focus 
of attention in this case is on the synchronisation procedures. 

The code in figure 3 illustrates two points. The first is that synchronisation is 
now requires processing (i.e. it's not simply the transmission of information); and 
the second is that its now the mutual achievement of both parties (i.e. its no 
longer sufficient for the originating side to send the information and move on). 

The approach is very simple. For the first time, the synchronisation procedure 
pays attention to the return value of propagate-act ion- to-s t ream, which can 
return information from the remote side. Here, we work to the model that 
integration work will be done by the remote stream, which may pass back 
modified data to reflect the resolution of conflicts; and so it must be reintegrated 
into the local stream's view. We also see the way in which incorporate-act ion 
is processes records of activities originating in some other stream. In this case, we 
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use the simplest strategy; if the remote action is an edit action, and if it is 
compatible with local changes, then it is applied, and if not, then syntactic 
consistency is achieved through aggregation. Since the open strategy used in 
Prospero allows specialised definition of functions such as compatibie-p and 
local ly-perform, then we can be quite loose in what is accepted, and work to 
achieve semantic consistency when possible. 

Specialisation in Prospero 

These examples show the pattern of Prospero use. First, it provides default 
behaviours which embody mechanisms for collaborative data management. This 
is what toolkits do, and so in this respect, Prospero is not particularly different 
from other toolkits (although the detail of Prospero's management strategies 
differs from those of other toolkits) Second, and critically, Prospero structures 
these mechanisms in an object-oriented framework and reveals elements of this 
framework to applications as a means to introspection and intercession. Prospero, 
then, provides two, orthogonal interfaces the functionality of its collaboration 
support mechanisms. The first, base-level interface provides facilities which 
clients use to create collaborative applications. The second, meta-level interface 
allows internal functionality to be specialised to the needs of particular 
applications. Design decisions are not hidden behind traditional abstraction 
barriers but are open to manipulation, so the toolkit can support a wider range of 
application requirements than would otherwise be possible (Dourish, 1995a). 

Summary 

Managing the consistency of distributed data is a critical issue for many 
collaborative systems. However, the interactive nature of CSCW systems means 
that many techniques which might be adopted from other areas of distributed 
systems engineering are not appropriate. Even when they can be used, their 
implications often limit them to a restricted set of applications; and hence they are 
not suitable for a toolkit to support a wide range of applications. 

I have outlined an alternative approach. Rather than creating the illusion of a 
single stream of activity, it is based on divergence and synchronisation between 
multiple, parallel streams. This approach is particularly suited to CSCW 
applications, and, as a specialisable model, it can be used as flexible basis for 
development. Along with the consistency guarantee mechanism, divergence 
forms the basis of the distributed data management in Prospero, a reflective 
toolkit for the design of collaborative applications. Prospero is a vehicle for the 
exploration of issues of flexibility and openness in the design and use of 
collaborative applications; and the use of divergence is a critical component of its 
open approach to CSCW design. 
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