
www.manaraa.com

Proceedings of the Fourth European Conference on Computer-Supported Cooperative Work,
September 10-14, Stockholm, Sweden
H. Marmolin, Y. Sundblad, and K. Schmidt (Editors)

The Parting of the Ways: Divergence,
Data Management and Collaborative
Work
Paul Dourish ;
Rank Xerox Research Centre, Cambridge Laboratory (EuroPARC) and Dept of
Computer Science, University College, London (dourish@europarc.xerox.com).

Abstract: Systems coordinating distributed collaborative work must manage user data
distributed over a network. The strong consistency algorithms which designers have
typically borrowed from the distributed systems community are often unsuited to the
particular needs of CSCW. Here, I outline an alternative approach based on divergence
and synchronisation between parallel streams of activity. From a CSCW perspective, this
strategy offers three primary advantages. First, it is scalable, allowing smooth transitions
from highly interactive collaboration to-more extended, "asynchronous" styles of work.
Second, it supports "multi-synchronous" work, in which parties work independently in
parallel. Third, it directly supports observed patterns of opportunistic activities in
collaborative working.

Introduction: Distributed Data Management

Collaborative applications coordinate activities which may be distributed in time
and/or space. Distributed in time, activities may take place at different times but
are coordinated to achieve a unified effect (such as the production of a document).
Distributed in space, activities may take place on different computers perhaps
linked by a data network. So, collaborative applications, are heir to a set of design
problems which have arisen in the development of distributed computing systems
(or just "distributed systems"), concerning distributed data management..

This paper considers strategies to meet the conflicting demands placed on
collaborative applications, in presenting users with a single, uniform data "space".

O l S

mailto:dourish@europarc.xerox.com

www.manaraa.com

218

Managing Divergence
• • " " • ' i : ,

The variety of data management strategies is testament to the fact that no single
approach is applicable in all cases. In part, this is simply due to the considerable
variation in the needs of CSCW systems. In addition, it is because the choice of
management strategies has strong implications for the interface and for the nature
of collaborative'interaction in'a CSCW system (e.g. Greenberg and Marwood
(1994)). Collaborative systems, differ crucially from other distributed systems in
that not only the application, but also the interface, is distributed. The trade-offs
between availability, transparency, consistency and responsiveness must be made
with this in mind, and so design1 must be constantly mindful of the way m which
application distribution and interface distribution are mutually influential.

These issues are particularly important when building a CSCW toolkit, which
will be used to create a wide range of applications. The toolkit designer is even
more distant from end-users than is the developer of individual applications; and
so it becomes critical to understand the implications of distributed data strategies
for particular usage situations'. Here; we need to find a general characterisation of
distributed data management m CSCW.

' • (, , • • , ,] . i i ;

• ! . ' ' ' '

Inconsistency Avoidance'and Streams of Activity
We begin with a simple but crucial observation; that most approaches to data
management in CSCW deal with; inconsistency avoidance rather than consistency
management. Rather than working to achieve data consistency, they erect barriers
to prevent inconsistency arising.in ,the first place. This is a distributed systems
approach; the system manages] the,action of the separate components to avoid
inconsistency. Applying this, strategy to collaborative work is problematic. Our
distributed entities are users, not programs; and they're less prepared to accept the
imposition of global mechanisms;to constrain their activity!

Since inconsistency arises through the simultaneous execution of conflicting
operations, the simplest approach to avoiding inconsistency is to avoid
simultaneous action over individual data items. This approach attempts to define
single, global stream of activity oyer the data space. Asynchronous access
achieves this, by sharing one stream, between multiple participants, one at a time.
Floor control policies and lockingjmechanisms do likewise, at a finer granularity.

The alternative,approachjexplored here abandons this attempt to construct a
single stream of activity out of multi7user activity. Instead, it begins with a picture
of multiple, simultaneous streams of activity, and then looks to manage
divergence between these streams. Divergence occurs when two streams have
different views of the data state. This could arise through simultaneous execution
of conflicting operations; or through a lag in propagating compatible operations.

Since this general view does not imply any particular number of parallel
streams of activity, it encompasses the traditional views outlined earlier; they

www.manaraa.com

219

correspond to the special case of just one stream. Divergence between multiple
streams of activity is the more general case; it subsumes attempts to maintain a
single thread of control. This generality is critical to the design of a toolkit.

This paper explores divergence in pursuit of a generic, specialisable model of
distributed data management. By generic, I mean that this model describes, in
general terms, a range of distribution strategies which can be used in CSCW
systems. By specialisable, I mean that any particular example can be
operationally described as a refinement of the general model. The model is not
simply a tool for the analytic description of CSCW architectures and
implementations; it can also be used to generate and implement new ones. It has
been developed as part of Prospero, a toolkit for CSCW application design using
explicit specialisable models as a basis for highly flexible, open-ended design
(Dourish, 1995a); and its framework is the basis for creating data management
strategies in CSCW applications.

Divergence

So, first, we regard collaborative activity as the progress of multiple, simultaneous
streams of activity. Second, we view inconsistency as divergence between these
streams' views of data. Hence, we see distributed data management in terms of
the re-synchronisation of divergent streams of activity. As collaboration
progresses, the streams continually split and merge, diverge and synchronise. At
synchronisation, they re-establish a common view of the data; further activity will
cause them to diverge again, necessitating further synchronisation later.

Divergence and Versioning

This view of continual divergence and synchronisation is similar to that of
versioning systems, which maintain a historical record of the versions of some
object which have existed over time. They typically allow multiple versions of an
object to exist at once, and in some, multiple versions can be simultaneously
active. GMD's CoVer (Haake and Haake, 1993) uses a version system to manage
the cooperative work. ; however, it emphasises the creation and management of
parallel versions rather than the subsequent integration of different versions
(divergent streams). Munson and Dewan (1994) provide a framework organised
around version merging, but, again, they primarily emphasise versioning and
merging within a context of "asynchronous" work, rather than as a more general
approach to distributed data management. I want to consider the wider use of
divergence as a general strategy (discussed in more detail below).

Divergence and Operational Transformation

An alternative technique which has been employed effectively in a number of
collaborative systems is operational transformation (Ellis and Gibbs, 1989;
Beaudoiun-Lafon and Karsenty, 1992). Operational transformation employs a

www.manaraa.com

220

model of multiple streams, and uses a transformation matrix to transform records
of remote operations before applying them locally, using information about the
different contexts in which the operations arose. Clearly, this approach is much
closer to the divergence model advocated here, but there are two principal
differences. First, just as versioning approaches have typically emphasised
asynchronous activity, operational transformation has typically emphasised
synchronous; as will be discussed, Prospero's model attempts to be more general.
Second, operational transformation relies upon the transformation matrix to
resolve conflicts (easier in the tightly-coupled, synchronous domain); whereas
Prospero employs a more general notion of synchronisation which potentially
offers a much wider scale of applicability.

Much of what's critical about the divergence view is what it doesn't say,
because those areas of openness are the keys to the speciahsable nature of the
model. So far, nothing has been said about the defined units of activity, or what
constitutes a "stream"; nothing has been said about the granularity of
"divergence" per se and how it is recognised; and nothing has been said about the
timescale on which divergence and resynchronisation takes place. In fact, this
openness is critical to the particular advantages of divergence for CSCW.

Divergence and Replicated Databases

Replicated database research has also addressed questions of divergence. In a
replicated database, multiple copies of all or part of the database are maintained in
parallel, to increase availability. This is discussed in detail elsewhere (Dourish,
1995b), but an outline is appropriate here.

In database work, consistency is normally maintained by supporting the
transaction model, which decomposes database activity into a sequence of
transactions. Transactions group related operations for atomic execution; since
transactions execution is all-or-nothing, consistency can be maintained. In
replicated databases, research focuses on the detection of transaction conflicts and
on finding an execution order which avoids potential conflicts. Various
approaches can be used to sustain the transaction model under replication. For
instance, distributed conflict detection can be used to generate the consistent
serialisation globally, rather than individually at each replication point; or
rollback techniques can be used as an optimistic concurrency model, so that
conflicting transactions can be undone and reexecuted later.

These techniques place the detection, avoidance and management of conflicts
within the database itself; unlike this proposal, the application is typically not
involved in the conflict management process. This is generally true when
collaborative applications are based on database technology. However, there are
times when this model must break down. In Lotus Notes, for example, users
interact directly with document databases replicated amongst different sites but
largely disconnected from each other, and so conflicts can occur dunng periods of
simultaneous work (as here). However, in these cases, Notes merely flags the

www.manaraa.com

221

conflict and carries on, rather than providing any means for conflict resolution.
Replicated databases deal with some problems which divergence raises; however,
they generally do not directly exploit divergence to support multi-user activity.

Capitalising on Divergence

Divergence-based data management in CSCW offers three particular advantages
over other techniques. First, it is highly scalable, supporting inter-application
communication from periods of milliseconds to periods of weeks or more.
Second, it opens up direct CSCW support for an area of application use—one I
term multi-synchronous—which are supported poorly or not-at-all by existing
approaches. Third, it directly supports common patterns of working activity based
on observational studies which are at odds with the models embodied in most
systems today.

Scalability

Scalability refers to graceful operation across some dimension of system design.
In particular, the scalable dimension here is the pace of interaction (Dix, 1992);
or, more technically, its relationship to the period of synchronisation.

The period of synchronisation is the regularity with which two streams are
synchronised, and hence the length of time that two streams will remain
divergent. When the period is very small, then synchronisation happens
frequently, and therefore the degree of divergence is typically very small before
the streams are synchronised and achieve a consistent view of the data store.
When individuals use a collaborative system with a very small period of
synchronisation, their view of the shared workspace is highly consistent, since
synchronisation takes place often relative to their actions. This essentially
characterises "real-time" or synchronous groupware, in which users work
"simultaneously" in some shared space which communicates the effects of each
user's actions to all participants "as they happen". The synchronous element
arises from precisely the way in which the delay between divergence(an action
taking place) and synchronisation (the action being propagated to other
participants) is small. This is one end of the "pace of interaction" dimension.

At the other end, synchronisation takes place much less frequently in
comparison to the actions of the users. There is considerably more divergence,
arising from different sorts of activities which take place between synchronisation
points. When the period of synchronisation is measured in hours, days or weeks,
we approach what is traditionally thought of as "asynchronous" interaction. A
(well-worn) example might be the collaborative authoring of an academic paper,
in which authors take turns revising drafts of individual sections or of the entire
paper over a long period, passing the emerging document between them.

Within the CSCW community, these sorts of asynchronous interactions have
generally been seen and presented as being quite different from real-time or

www.manaraa.com

222

synchronous interactions; "synchronous or asynchronous" has been a distinction
made in both design and analysis. However, by looking at them in terms of
synchronisation rather than synchrony, we can see them as two aspects of the
same form of activity, with different periods of synchronisation. Being highly
scalable across this dimension, the divergence approach provides the basis of a
toolkit which generalises across this distinction.

Multi-Synchronous Applications

We can exploit a divergence-based view of distributed data management to go
further than standard "synchronous" and "asynchronous" views of collaboration.

Standard techniques attempt to maintain the illusion of a- single stream of
activity within the collaborative workspace. We know, however, that groups don't
work that way; it's much more common to have a whole range of simultaneous
activities, possibly on different levels. Consider the collaboratively-authored
paper again. In the absence of restrictions introduced by particular technologies or
applications, individuals do not rigorously partition their activity in time, with all
activity concentrated in one place at a time; that is, they do not work in the
strongly asynchronous style, one at a time, that many collaborative systems
embody. A more familiar scenario would see the authors each take a copy of the
current draft and work on them in parallel—at home, in the office, on the plane or
wherever. Here we have simultaneous work by a number of individuals and
subsequent integration of those separate activities; not synchronous, or
asynchronous, but multi-synchronous work.

Multiple, parallel streams of activity is a natural way to support this familiar
pattern of collaborative work. Working activities proceed in parallel (multiple
streams of activity), during which time the participants are "disconnected"
(divergence occurs); and periodically their individual efforts will be integrated
(synchronisation) to achieve a consistent state and progress group activity.

Here, we're concerned with the nature of synchronisation, discussed in more
detail subsequently. At this stage, the details of synchronisation in a variety of
cases are not of prime importance; examples will be considered in more depth
later on. For the moment, however, what's important is to recognise the support
for multi-synchronous working within this model of distributed data management.

Supporting Opportunistic Work

Divergence does not simply support a different working style; it's also a means
to more naturally support the other styles to which CSCW has traditionally
addressed itself. In studies of collaborative authoring, Beck and Bellotti (1993)
highlighted the opportunistic way in which much activity was performed. In
particular, they pointed to the ways in which opportunistic action on the parts of
individual collaborators often went against pre-defined roles, responsibilities or
plans. Individuals acted in response to specific circumstances; while the plans and
strategies formed one guide to their actions, they were by no means the only

www.manaraa.com

223

factors at work, and in each of their case studies, they observed occasions on
which agreements about who would do what and when were broken. Critically,
these broken agreements are neither unusual nor problematic; this opportunistic
activity is part of the natural process of collaboration. (Suchman (1987) has, of
course, made similar telling observations about the status of plans as resources for
action rather than as rigorous constraints upon it.)

So, we must be wary of introducing technology which inappropriately reifies
plans and use pre-formed strategies to organise collaborative activity since
observational studies show that they are opportunistically broken in the course of
an activity. Turn-taking floor control policies, or partitioning a workspace into
separate regions accessible to different individuals, are examples of technological
approaches which structure user interaction around plans of this sort. Once again,
this contrasts the particular needs of CSCW systems with traditional distributed
systems, and shows that a distributed interface is an important consideration. To
support the sort of opportunistic working described by Beck and Bellotti, then,
our technology must relax rules about exclusion and partitioning; exactly the rules
which have been employed to maintain the fiction of the single stream of activity.

So the same sorts of mechanisms which were described earlier as supporting
multi-synchronous collaboration have, in fact, a wider range of applicability; they
support a more naturalistic means of making asynchronous collaboration work.
Divergence is a direct consequence of these ways of working; and so a model of
distributed data management based on a pattern of repeated divergence and
synchronisation fits well with support for a wide range of working styles.

Constraining Divergence: Consistency Guarantees

There is still a problem which must be addressed if we hope to use divergence
as a strategy for building CSCW systems rather than simply talking about them.
At any given point, how can we maintain reasonable expectation that
synchronisation will be possible? If two streams diverge arbitrarily, how can we
be sure that a consistent view can be constructed later?

Syntactic and Semantic Consistency

The answer has two components. The first lies in the very general nature of
"synchronisation". The notion of synchronisation is in not meant to imply that
consistency can be achieved automatically. Certainly, it may be possible in many
cases—particularly where divergence is slight, or activity over the data is highly
structured—to resolve divergence by automatic mechanisms; but this automation
is not central to the model. In other cases, conflict resolution may require human
intervention. However, we can make a distinction between semantic and syntactic
consistency. By "semantic" consistency, I mean that the data is internally

www.manaraa.com

224

"consistent" and "appropriate for its intended use". By "syntactic" consistency, I
mean merely that two streams see the same view of the data, even if that view
doesn't necessarily make sense in context.

Consider collaborative writing again. Simple changes in formatting, text
insertion, and so forth can be automatically integrated and so synchronisation is
largely automatic. Others, however, require human intervention. For instance, if
two authors have completely changed the same paragraph, then clearly the
authors should be responsible for deciding which paragraph text should be used,
and how the conflict can be resolved. So human intervention is required to
achieve semantic consistency; but a different form of consistency—syntactic—
can be achieved without human intervention. The system can apply the same
approach which collaborative authors might well employ when out-of-touch with
each other; preserving both texts, along with some marker that "this choice
remains to be resolved". This approach is aggregation—the combination of
unresolvable data elements to form a single larger unit. Aggregation achieves
syntactic consistency, which retains the property we require at the system level—
that the two streams share a view of the user data. It allows the two individuals
involved to be able to continue working for the moment, although they will have
to come back and sort out the problem later, together.

So, by maintaining semantic consistency when possible, resorting to syntactic
consistency when necessary, and potentially using weak techniques such as
aggregation, we can achieve a working level of consistency under a variety of
circumstances. However, we can do more to help ensure that this works smoothly.

Consistency Guarantees

The second aspect of our solution is technological.
Clearly, we can be more confident about achieving consistency if we have

some idea of what type of divergence is likely to occur. The longer the periods of
divergence, the less sure we can be about this, and hence about achieving
consistency. If we knew in advance what sort of actions were likely to occur on a
stream before the next point of synchronisation, we could make some kind of
guarantee of the degree of consistency which can be achieved.

In Prospero, consistency guarantees explicitly represent these interactions.
Before divergence, one stream can "describe" the likely actions which will occur
during the period of divergence. For instance, if a user has opened a document for
reading only, then it's likely that no changes will be made. Alternatively, it may
be possible to say that the expected changes are all structural, rather than affecting
the content, or that the user will only add information but not delete any. In
exchange for this, the client can receive a statement of the level of
synchronisation which can likely be achieved at the next synchronisation point—a
consistency guarantee. Again, these are explicit computational artefacts in
Prospero. Essentially, the guarantee says, "if only actions of those sorts occur,

www.manaraa.com

225

given other declarations of expected activities in other streams, this level of
consistency should be achievable when synchronisation occurs."

Consistency guarantees are a more general mechanism than traditional locks,
although they share certain properties. Consistency guarantees are used to manage
simultaneous action (rather than to avoid it, like locks); and as a result, they
embody more limited guarantees of later consistency (while locks guarantee
absolute consistency). However, they share the principle of providing information
about activities in advance, in exchange for guarantees of later consistency. We
wish to avoid the problems of locking described above, such as poor support for
opportunistic working. So in Prospero, the client can break its "promise" about
expected behaviour, in which case the system will no longer be held to its
guarantee. If the client, or the user, performs actions which were not part of its
declaration, then perhaps only some weaker form of consistency can be achieved.

Consistency guarantees are a way to manage expectations, but not to enforce
activity. Space is too limited here to go into the full details of this approach and
the way in which it is embodied in Prospero; and in later sections, I will pass over
the relationship between divergence, synchronisation and consistency guarantees.
A fuller discussion is presented elsewhere (Dourish, 1995b).

Divergence in Prospero

We can now look at how divergence work in practice. Prospero is a CSCW
toolkit written in Common Lisp which has been designed to provide application
developers with a great deal of flexibility in tailoring the toolkit's components
and strategies to the needs of specific applications or usage situations. It employs
computational reflection (Smith, 1984) and open implementation (Kiczales, 1992)
to open up the implementation and allow application developers—the toolkit's
users—principled access to internal aspects of the toolkit. This approach exploits
specialisable generic models of the sort outlined here. In Prospero, the
divergence/synchronisation patterns form a framework within which particular
distribution mechanisms are implemented. This is encoded in an object-oriented
class hierarchy; new strategies are developed by specialisation.

Here, I will present examples to illustrate the use of the divergence mechanism
in Prospero and show how divergence supports a wide range of application
strategies. The examples take the form of code fragments2 illustrating the
framework's specialisation to the needs of particular applications. After presenting
these examples, I'll step back to consider the structure of the framework itself.
Some points should be noted. First, the examples have been considerably
simplified to illustrate the main points in the space available. In particular, the
interaction between divergence management and consistency guarantees has been

2 At this point, and as promised, I beg the indulgence of non- technical readers However, the structure of the
code fragments is more important than their detail

www.manaraa.com

226

omitted. Second, these examples operate on three levels at once, and it's critical
to a conceptual understanding that these are kept separate. The first is that of the
example applications used to illustrate the ideas; the second is the use of
programming structures to realise these applications, and the third (most
important) level is the use of divergence to provide a programming framework.
Since the examples have been structured to highlight this third level, liberties
have been taken with application requirements and efficient programming.

Example: Shdr

Shdr is a simple replicated shared whiteboard application, designed outside the
divergence framework. Actions are performed on the user's own copy of the data,
and are recorded in a buffer of activity records. Periodically, buffers are sent to
other participants using a simple high-level protocol. The update frequency
varies, but generally the history is be transmitted multiple times per second.

(defmethod perform-local-action :after ((action <edit-action>))
(add-action-to-stream action *my-stream*))

(defmethod add-action-to-stream ((action <edit-action>) (stream <stream>))
(push action (stream-actions stream)))

(defmethod add-action-to-stream after (action (stream <bounded-stream>))
(if (full-p stream)

(synchronise stream (stream-remote stream))))

(defmethod synchronise ((stream <bounded-stream>) (remote <remote-stream>))
(dohst (action (reverse (stream-actions stream)))

(propagate-action-to-stream action remote))
(stream-reset stream))

(defmethod propagate-action-to-stream (action (stream <remote-stream>))
(remote-call (stream-host stream) incorporate-action action))

Figure 1. Mapping shdr's strategy into the Prospero framework.

We can reconstruct shdr's approach in the divergence framework (figure 1).
Local actions create divergence from a shared view of the whiteboard until
synchronisation, when history records are exchanged. Each user's actions are
associated with a particular stream, where they are recorded until synchronisation.

User actions are explicitly represented within a class hierarchy rooted in the
abstract class <action>. Different actions are instances of its subclasses. Here,
we use the subclass <edit-action> for actions which have an effect on the data
store (such as making or erasing a mark, but not cursor movement).

Activity streams are also explicitly represented, under the abstract class
<stream>. Two subclasses of <stream> are used here. The first, <remote-

www.manaraa.com

227

stream>, represents the streams of other users; the second, <bounded-stream>,
is a particular kind of local stream with specialised behaviours, particular to the
way that shdr manages user data. A <bounded-stream> accumulates local actions
and periodically flushes them to other participants.

We define shdr's strategy in Prospero by writing specific methods on a generic
function framework3 which in turn describes the general model that Prospero
embodies. These are the hooks onto which specialised behaviour can be hung. For
instance, the generic function perform-iocai-act ion, which Prospero uses to
operate on the local copy of user data, is a place to "attach" the association of user
actions with a specific stream. This is defined for <edit-act ion> operations,
rather than all <action> operations, since only the actions which cause a change
in the data store contribute to divergence. Next, the test for whether a bounded
stream is "full" and needs to be synchronised is made after any new action record
is stored there, and so the after-method we define for add-ac t ion- to - s t ream
specialises on <bounded-stream> rather than <stream>, so it applies only to
bounded streams.

(defmethod add-action-to-stream ((action <edit-action>) stream)
(push action (stream-actions stream)))

(defmethod add-action-to-stream ((action <synchronise-action>) stream)
(synchronise stream (stream-remote stream)))

(defmethod synchronise (stream (remote <remote-stream>))
,, as Figure 1 ...
.-)

(defmethod propogate-action-to-stream (action (stream
<remote-stream>))

,; as figure 1...
....)

Figure 2- Check-in/check-out strategy.

Example: Source Code Control

The second example is a traditional source code control system in a
collaborative programming environment., using a check-in/check-out model for
software components or modules, and a dependency mechanism which records
relationships between them.

After the first example, most of the structure for this is already provided. We
already have a means to accumulate and distribute sets of changes which arise in

I use CLOS terminology here for object-oriented concepts. In Smalltalk, the closest relative of a "generic
function" is a "message", in C++, a "virtual function".

www.manaraa.com

228

one place or another, which can be reused here. The most important change, as
illustrated in figure 2, concerns user-initiated synchronisation. This code uses a
new action class, <synchronise-action>, for operations which explicitly force
synchronisation. In normal editing, the system accumulates the action records, as
before; but for synchronisation actions, the synchronisation function is invoked.

Example: Multi-synchronous Editing

As a final example, let's consider the implications of multi-synchronous working.

(demethod synchronise (stream (remote <remote-stream>))
(dohst (action (reverse (stream-actions stream))

(integrate (propagate-action-to-stream action remote)))
(stream-reset stream))

(defmethod propagate-action-to-stream (action (stream
<remote-stream>))

(remote-call (stream-host stream) incorporate-action action))

(defmethod incorporate-action (action <edit-action>)
(if (compatible-p action) (locally-perform action)

(aggregate action)))

Figure 3 Supporting multi-synchronous activity.

With the exception of the possible use of consistency guarantees, omitted here
due to space considerations, multi-synchronous activity is no different at the point
of divergence Once again, we can accumulate actions until some synchronisation
action occurs, either automatically or by user request. This, however, is the point
at which a more complex strategy is required. In the first example, we could
simply ignore data consistency problems, and in the second, asynchronous access
ensured that such problems didn't arise. In this example, we have to be aware of
the possibility of mutually inconsistent changes and act accordingly. So the focus
of attention in this case is on the synchronisation procedures.

The code in figure 3 illustrates two points. The first is that synchronisation is
now requires processing (i.e. it's not simply the transmission of information); and
the second is that its now the mutual achievement of both parties (i.e. its no
longer sufficient for the originating side to send the information and move on).

The approach is very simple. For the first time, the synchronisation procedure
pays attention to the return value of propagate-act ion- to-s t ream, which can
return information from the remote side. Here, we work to the model that
integration work will be done by the remote stream, which may pass back
modified data to reflect the resolution of conflicts; and so it must be reintegrated
into the local stream's view. We also see the way in which incorporate-act ion
is processes records of activities originating in some other stream. In this case, we

www.manaraa.com

229

use the simplest strategy; if the remote action is an edit action, and if it is
compatible with local changes, then it is applied, and if not, then syntactic
consistency is achieved through aggregation. Since the open strategy used in
Prospero allows specialised definition of functions such as compatibie-p and
local ly-perform, then we can be quite loose in what is accepted, and work to
achieve semantic consistency when possible.

Specialisation in Prospero

These examples show the pattern of Prospero use. First, it provides default
behaviours which embody mechanisms for collaborative data management. This
is what toolkits do, and so in this respect, Prospero is not particularly different
from other toolkits (although the detail of Prospero's management strategies
differs from those of other toolkits) Second, and critically, Prospero structures
these mechanisms in an object-oriented framework and reveals elements of this
framework to applications as a means to introspection and intercession. Prospero,
then, provides two, orthogonal interfaces the functionality of its collaboration
support mechanisms. The first, base-level interface provides facilities which
clients use to create collaborative applications. The second, meta-level interface
allows internal functionality to be specialised to the needs of particular
applications. Design decisions are not hidden behind traditional abstraction
barriers but are open to manipulation, so the toolkit can support a wider range of
application requirements than would otherwise be possible (Dourish, 1995a).

Summary

Managing the consistency of distributed data is a critical issue for many
collaborative systems. However, the interactive nature of CSCW systems means
that many techniques which might be adopted from other areas of distributed
systems engineering are not appropriate. Even when they can be used, their
implications often limit them to a restricted set of applications; and hence they are
not suitable for a toolkit to support a wide range of applications.

I have outlined an alternative approach. Rather than creating the illusion of a
single stream of activity, it is based on divergence and synchronisation between
multiple, parallel streams. This approach is particularly suited to CSCW
applications, and, as a specialisable model, it can be used as flexible basis for
development. Along with the consistency guarantee mechanism, divergence
forms the basis of the distributed data management in Prospero, a reflective
toolkit for the design of collaborative applications. Prospero is a vehicle for the
exploration of issues of flexibility and openness in the design and use of
collaborative applications; and the use of divergence is a critical component of its
open approach to CSCW design.

www.manaraa.com

230

Acknowledgements

Alan Dix and John Lamping provided inspiration, while Dik Bentley, Jon
Crowcroft and the conference reviewers improved the quality of exposition.

References

Ahuja, S., Ensor, J. and Lucco, S. (1990)- "A Comparison of Application Sharing Mechanisms in
Real-time Desktop Conferencing", in Proc. ACM Conf Office Information Systems
COIS'90, Boston, 1990.

Beaudouin-Lafon, M. and Karsenty, A (1992): "Transparency and Awareness in Real-Time
Groupware Systems", in Proc. ACM Conf User Interface Software and Technology
UIST'92, Monterey, Ca , November 1992.

Beck, E. and Bellotti, V (1993). "Informed Opportunism as Strategy", in Proc. Third Eruopean
Conference on Computer-Supported Cooperative Work ECSCW93, Milano, Italy, 1993.

Dix, A (1992): "Pace and Interaction", in People and Computers VII: Proc. ofHCI'92, York, UK,
1992.

Dourish, P. and Bellotti, V. (1992): "Awareness and Coordination in Shared Workspaces", in
Proc. ACM Confe Computer-Supported Cooperative Work CSCW'92, Toronto, Canada,
1992

Dourish, P. (1995a). "Developing a Reflective Model of Collaborative Systems," ACM
Transactions on Computer-Human Interaction, 1995 (in press)

Dourish, P. (1995b) "Consistency Guarantees' Exploiting Operation Semantics for Consistency
Management in Collaborative Systems", EuroPARC Technical Report, Cambridge, UK,
1995

Ellis, C and Gibbs, S (1989)' "Concurrency Control in a Groupware System", in Proc. ACM
Conf Manamagement of Data SIGMOD'89, Seattle, Washington, 1989

Greenberg, S., Roseman, R , Webster, D and Bohnet, R. (1992)' "Human and Technical Factors
in Distributed Group Drawing Tools", Interacting with Computers, 4(3), pp 364-392, 1992

Greenberg, S and Marwood, D. (1994)- "Real-time Grouopware as a Distributed System
Concurrency Control and its Effect on the Interface", in Proc ACM Conf Computer
Supported Coooperative Work CSCW'94, Chapel Hill, North Carolina, 1994.

Haake, A and Haake, J. (1993). "Take CoVer: Exploiting Version Management in Collaborative
Systems", in Proc. InterCHI'93, Amsterdam, Netherlands, 1993.

Kiczales, G. (1992) "Towards a New Model of Abstraction in the Engineering of Software", in
Proc. Workshop on Reflection and Meta-level Architectures IMSA '92, Tokyo, Japan, 1992

Lauwers, C, Joseph, T., Lantz, K. and Romanow, A (1990): "Replicated Architectures for Shared
Window Systems: A Critique", in Proc. ACM Conf Office Information Systems COIS'90,
Boston, Massachusetts, 1990

Munson, J. and Dewan, P (1994)- "A Flexible Object Merging Framework", in Proc. ACM Conf.
Computer-Supported Cooperative Work CSCW'94, Chapel Hill, North Carolina, 1994

Smith, B. (1984): "Reflection and Semantics in LISP", in Proc. ACM Symposium on Principles of
Programming Languages POPL, Salt Lake City, Utah, 1984.

Suchman, L. (1987) "Plans and Situated Actions ", Cambridge University Press, Cambridge, UK,
1987

